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Abstract
We present an algorithm to extract an high-quality approximation of the (top-k) Frequent itemsets

(FIs) from random samples of a transactional dataset. With high probability the approximation is a
superset of the FIs, and no itemset with frequency much lower than the threshold is included in it. The
algorithm employs progressive sampling, with a stopping condition based on bounds to the empirical
Rademacher average, a key concept from statistical learning theory. The computation of the bounds
uses characteristic quantities that can be obtained efficiently with a single scan of the sample. Therefore,
evaluating the stopping condition is fast, and does not require an expensive mining of each sample.
Our experimental evaluation confirms the practicality of our approach on real datasets, outperforming
approaches based on one-shot static sampling.

1 Introduction
The task of Frequent Itemsets (FIs) mining is to extract all sets of items that appear in at least a fraction θ of
a transactional dataset D, or the k most frequent set of items [2]. It is a fundamental primitive of knowledge
discovery and is useful, among the others, for market basket analysis, inference, classification, and network
management [13]. Exact algorithms to mine FIs have since long been available but their practicality is
hindered by the need to scan the dataset multiple times [1, 12]. When the dataset is too large to fit into
main memory, as it is the case for many modern datasets, the running time of exact FIs mining algorithms
may be too high to be practical. A natural way to reduce the dependency on the dataset size is to only
analyze a small random sample of the dataset that can reside in main memory. The collection of FIs obtained
from the sample will be an approximation to the exact collection, due to the fact that only a subset of the
dataset is analyzed. Approximate collections of FIs are nevertheless acceptable in most cases due to the
exploratory nature of the FIs mining step in the knowledge discovery process. There is an intrinsic trade-off
between the size of the sample (number of transactions in the sample) and the accuracy of the estimation,
but a loose analysis of this trade-off may result in sample sizes much larger than what is needed to obtain
and approximation with the desired level of accuracy and confidence. It is therefore necessary, although
challenging, to develop algorithms that leverage on tight bounds to the trade-off between sample size and
accuracy in order to fully exploit the power of sampling.
Contributions. In this work we study the trade-off between approximation quality and sample size using
concepts and results from statistical learning theory [28]. We present a randomized algorithm to mine a
high-quality approximation of the collection of FIs w.r.t. a minimum frequency threshold θ (and of the top-k
most frequent itemsets) from random samples of the dataset D. With probability at least 1 − δ, for some
∗This is the extended version of the article with the same title accepted for publication at KDD’15.
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user-specified δ ∈ (0, 1), the returned approximation is a superset of the exact collection of FIs and no itemset
in the approximation may have frequency less than θ − ε, for some user-specified ε ∈ (0, 1). Moreover, the
estimation of the frequency of all itemsets in the output is within ε/2 of their exact value. The algorithm uses
progressive sampling, i.e., it starts from a small sample and enlarges it until a suitable stopping condition
is verified, meaning that an high-quality approximation can be obtained from the sample. The stopping
condition is based on bounds to the empirical Rademacher average of the problem at hand, a key concept
from statistical learning theory [4]. In particular we prove that we can bound the empirical Rademacher
average and therefore the maximum deviation between the frequency of an itemset in the dataset and the
frequency of that itemset in the sample using a function of the sample size, of δ, and of a partitioning of
the set of Closed Itemsets (CIs) [19] in the sample. We also give a bound, which is of independent interest,
to the number of CIs in the sample. To our knowledge this is the first algorithm that uses bounds on the
empirical Rademacher average in the domain of pattern mining, and one of the first to adapt these highly
theoretical concepts to develop an efficient algorithm for an important practical task. We conducted an
extensive experimental evaluation to test our algorithm and assess its performances in terms of the quality
of the returned collection of itemsets and of the runtime, comparing it with standard baselines.
Outline. We start by reviewing related works in Sect. 2. We then formalize the problem of FIs mining and
formally define the concept of approximation in Sect. 1. Our algorithm and its analysis are presented in
Sect. 4. The goals, methodology, and results of the experimental evaluation can be found in Sect. 5. Finally,
we draw some conclusions and suggest some future directions in Sect. 6.

2 Related work
The idea of using random samples to speed up the extraction of FIs has been studied since shortly after the
first efficient exact algorithms had been presented [27]. Many works focused on deriving bounds for the size of
a single sample to obtain high-quality approximation. Riondato and Upfal [22] present what is currently the
best available bound. We refer the interested reader to their extensive discussion of previous results on fixed
sample sizes and we focus here on the works that examined progressive sampling [6, 7, 14, 18, 20, 21, 25].

The use of progressive sampling, in contrast with a sample of fixed size, can contribute to an even greater
speed up of the extraction of FIs, especially when combined with an appropriate schedule and starting
sampling size [11, 14, 21]. Developing a stopping rule that allows to obtain approximations of guaranteed
quality is a challenging task. Chen et al. [6], Parthasarathy [18], and Chuang et al. [7] propose progressive-
sampling-based algorithms that use heuristics based on self-similarity or the frequency of single items to
determine the stopping sampling size. Because of the use of heuristics, these approaches offer no guarantee
on the quality of the obtained collection. In contrast, our algorithm returns, with high probability, a collection
of itemsets with strong approximation guarantees.

Pietracaprina et al. [20] and Scheffer and Wrobel [25] focuses on extracting the top-k most frequent
itemsets using progressive sampling. The stopping condition suggested by Scheffer and Wrobel [25] employs
progressive filtering of the set of candidate FIs based on Chernoff bounds until only k itemsets are left, but
offers no guarantee on whether the returned collection contains any of the actual top-k FIs, rather a much
weaker guarantee is offered. Our algorithm instead guarantees that the returned collection of itemsets is a
superset of the top-k FIs. The algorithm by Pietracaprina et al. [20] uses a stopping condition based on the
frequency of all itemsets in the sample. The analysis is based on traditional Chernoff and union bounds and
limited to itemsets up to a fixed length. Our algorithm does not suffer from this limitation and our analysis
uses powerful deviation bounds based on Rademacher averages.

Another major point of difference between our work and the ones previously presented is the fact that
checking the stopping condition of our algorithm does not require to run an exact FI mining algorithm on
the sample. As a consequence, our stopping condition is much more efficient to evaluate, resulting in lower
running time.

We use bounds to the Rademacher averages [3, 16], an important concept from statistical learning theory.
We only introduce the necessary notation and results, and we refer the reader to the book by Shalev-Shwartz
and Ben-David [26] for an in-depth presentation of these topics.
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To the best of our knowledge, the only previous use of bounds or estimates of the Rademacher averages
in a progressive sampling setting is the work by Elomaa and Kääriäinen [8] on learning two-level decision
trees, whose settings and problem are very different from the ones we study.

3 Definitions and preliminaries
Let I be a set of items with an arbitrary fixed total order “<”. A transaction is a subset of I, and a
transactional dataset is a collection of transactions. An itemset is a set of items that appear together in a
transaction (i.e., a subset of a transaction). Given an itemset A and a transaction τ s.t. A ⊆ τ , we say that
A appears or is contained in τ and that τ contains A. The support set TD(A) of A in D is the subset of
transactions in D that contain the itemset A, and the frequency of itemset A in dataset D is the fraction of
transactions of D that contain A:

fD(A) = |TD(A)|/|D| .

Given a frequency threshold θ ∈ (0, 1], the set FI(D, I, θ) of Frequent Itemsets (FIs) in D w.r.t. θ is the
collection of all itemsets with frequency at least θ in D:

FI(D, I, θ) = {(A, fD(A)) : A ⊆ I ∧ fD(A) ≥ θ} .

Similarly, let f (k)
D be the maximum frequency such that at least k itemsets have frequency at least f (k)

D in
D, then the set of the top-k FIs is

TOPK(D, I, k) = FI(D, I, f (k)
D ) .

Note that |TOPK(D, I, k)| ≥ k.
Goal. We aim at approximating the collection of (top-k) FIs by mining (i.e., extracting the FIs from)
random samples of D (i.e., random collections of transactions from D).

Definition 1. For ε, δ ∈ (0, 1), a (ε, δ)-approximation of FI(D, I, θ) is a collection C = {(A, fA) : A ⊆
I, fA ∈ (0, 1]} such that, with probability at least 1− δ:

1. for any (A, fD(A)) ∈ FI(D, I, θ) there is a pair (A, fA) ∈ C; and
2. for any (A, fA) ∈ C, it holds fD(A) ≥ θ − ε; and
3. for any (A, fA) ∈ C, it holds |fD(A)− fA| ≤ ε/2.

An (ε, δ)-approximation of FI(D, I, f (k)
D ) is an (ε, δ)-approximation of TOPK(D, I, k).

4 A progressive sampling algorithm with guarantees
We want to compute an (ε, δ)-approximation to FI(D, I, θ) (or to TOPK(D, I, k)) from random samples of
D of progressively increasing size (i.e., through progressive sampling). In the rest of this section we focus on
FI(D, I, θ), while the case for top-k FIs is presented in Sect. 4.5.

The basic steps of the iterative progressive sampling process are:

1. at iteration i, create a random sample Si of some predefined size |Si| by drawing transaction uniformly
and independently at random (with replacement) from D;

2. check a stopping condition to determine if an (ε, δ)-approximation of FI(D, I, θ) can be extracted from
Si;

3. if the stopping condition is satisfied, return the collection FI(Si,D, γ) for an appropriate value of γ and
exit, otherwise increase i and return to step 1.

In order to obtain an algorithm from this high-level description, it is necessary to formally specify the
following components:
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1. a sampling schedule (|Si|)i≥1 of sample sizes.
2. a stopping condition involving the sample Si, and an efficient procedure to check this condition.
3. a revised minimum frequency threshold γ.

Any non-decreasing sequence (|Si|)i≥1 can act as a sample schedule, giving complete freedom to the
algorithm designer and the user in this sense. In Sect. 4.6 we show how to compute the next sample size
using information from the current sample.

The choice of γ and of the stopping condition are intertwined. We choose γ = θ − ε/2, as motivated by
the following lemma, and this choice defines rigorous requirements for the stopping condition.

Lemma 1. Let S be a sample of D, and consider the event

ES : “|fD(A)− fS(A)| ≤ ε

2 for all A ⊆ I” . (1)

If
Pr(ES) ≥ 1− δ, (2)

then the collection FI(S, I, θ − ε/2) is a (ε, δ)-approximation to FI(D, I, θ).

Proof. Assume that the event ES in (1) is verified, which happens by hypothesis with probability at least
1 − δ. Then for no itemset B ∈ FI(D, I, θ) we may have fS(B) < θ − ε/2, hence B ∈ FI(S, I, θ − ε/2), as
required by property 1 from Def. 1. Let C be any itemset with fD(C) < θ−ε. We have that fS(C) < θ−ε/2,
so C /∈ FI(S, I, θ − ε/2), which is the condition specified by property 2 from Def. 1. Property 3 from Def. 1
follows from the fact that the event ES is verified.

This lemma gives the intuition behind the stopping condition of our algorithm: we can stop when (2)
holds for the sample S under consideration, as we can then use γ = θ − ε/2 to extract FI(D, I, γ), which is
an (ε, δ)-approximation to FI(D, I, θ).

The rest of this section is devoted to formalize this condition and derive a procedure to check whether (2)
holds for a sample S.

Checking whether (2) holds is equivalent to checking whether, with probability at least 1− δ,

sup
A⊆I
|fD(A)− fS(A)| ≤ ε

2 ,

hence we focus on bounding this quantity.

4.1 Rademacher averages
For each itemset A ⊆ I, we define the indicator function φA : 2I → {0, 1} as:

φA(B) =
{

1 if A ⊆ B
0 otherwise for any A ⊆ I, B ⊆ I .

When B is a transaction, φA(B) = 1 if the itemset A appears in the transaction B. Hence, we have

fD(A) = 1
|D|

∑
τ∈D

φA(τ)

and analogously for the frequency fS(A) of A in a sample S.
Assume that the sample S has size |S| = n. For each τi ∈ S, 1 ≤ i ≤ n, let σi be a Rademacher random

variable, i.e., a random variable taking value −1 or 1, each with probability 1/2. The random variables σi
are independent. The (sample) conditional Rademacher average is the quantity

RS = Eσ

[
sup
A⊆I

1
n

n∑
i=1

σiφA(τi)
]
,
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where Eσ denotes the expectation taken only w.r.t. the random variables σi, 1 ≤ i ≤ n (i.e., conditionally
on the sample) [4, 16]. An important result from statistical learning theory bounds the supremum of the
deviations with the conditional Rademacher average.
Theorem 1 (Thm. 3.2 [4]). With probability at least 1− δ,

sup
A⊆I
|fD(A)− fS(A)| ≤ 2RS +

√
2 ln(2/δ)

n
.

Note that the bound in the above theorem depends only on properties of the sample.
Computing RS directly is not easy. It would first require to mine all itemsets from S (i.e., extracting

FI(S, I, 1/|S|), which is excessively expensive, and then to find the expectation over the σi variables. Given
that no analytical methods are currently available to compute this expectation in general, this second step
would require an expensive Monte-Carlo simulation [4]. Nevertheless a different result from statistical learn-
ing theory allows us to bound RS using combinatorial properties of the sample. For any itemset A ⊆ I, let
vS(A) be the n-dimensional vector

vS(A) = (φA(τ1), . . . , φA(τn)),

and let VS = {vS(A), A ⊆ I}. Since VS is a set rather than a bag, we have |VS | ≤ 2|I| (and potentially
|VS | � 2|I|).
Theorem 2 (Massart’s Lemma, Thm. 3.3 [4]).

RS ≤ max
A⊆I
‖vS(A)‖

√
2 ln |VS |
n

,

where ‖ · ‖ denotes the Euclidean norm.
Although the above is the form in which the Theorem is usually stated, a careful reading of its proof

allows us to state the following stronger version.
Theorem 3. Let w : R+ → R+ be the function

w(s) = 1
s

ln
∑

v∈VS

exp(s2‖v‖2/(2n2)) . (3)

Then
RS ≤ min

s∈R+
w(s) .1

Proof. As in the proof for [4, Thm. 3.3] we can use the independence of the σi’s and the Hoeffding’s inequality
to show that, for any s > 0 and for any itemset A ⊆ I, we have

Eσ

[
exp

(
s

1
n

n∑
i=1

σiφA(τi)
)]
≤ exp

(
s2‖vS(A)‖2

2n2

)
.

For any v ∈ VS , let vi be the i-th component of v. We can use the above inequality to write

esRS = exp
(
sEσ

[
max
A⊆I

1
n

n∑
i=1

σiφA(τi)
])

= exp
(
sEσ

[
max

vS∈VS

1
n

n∑
i=1

σivi

])

≤ Eσ

[
exp

(
s max

vS∈VS

1
n

n∑
i=1

σivi

)]
≤

∑
vS∈VS

Eσ

[
exp

(
s

1
n

n∑
i=1

σivi

)]

≤
∑

vS∈VS

exp
(
s2‖vS‖2

2n2

)
.

1The proof for this theorem in the ACM KDD’15 version of this paper contained a typo in multiple equations. Specifically,
in place of v ∈ VS , it had A ∈ I. The statement of the theorem was and is correct, as were and are all results we build upon
this theorem in the rest of the paper.
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We can now take the logarithm on both sides and divide by s (which is strictly positive) and we obtain w.
Since the above inequalities are true for any s > 0, we can choose the one that minimizes the r.h.s. to obtain
the thesis.

We remark that the sum is only over elements in VS , not over all itemsets A ⊆ I. The set VS is a
not a bag, so it may contain fewer than 2|I| vectors, as there may be two itemsets A and B such that
vS(A) = vS(B).

As we show later, computing the function w is too expensive for our purposes as it requires the compu-
tation of the set VS , therefore, in the following, we develop an upper bound to w that is easy and fast to
compute.

4.2 Connection with Closed Itemsets
We now show a connection between the set VS and the collection of Closed Itemsets [19].

We recall that a Closed Itemset (CI) is an itemset A ⊆ I such that none of its proper supersets has the
same frequency of A (i.e., there is no B ) A s.t. fS(B) = fS(A)) [19]. Let CI(S) be the set of CIs in the
sample.

Lemma 2. The set VS contains all and only the vectors vS(A) for all A ∈ CI(S):

VS = {vS(A), A ∈ CI(S)}, and |VS | = |CI(S)| .

To prove Lemma 2, we need the following result.

Lemma 3. Let S ⊆ S. There is at most one CI A in S whose support set in S is TS(A) = S.

Proof. Suppose that there could be more than one CI in S with support set S, for example, w.l.o.g., two
itemsets C and D. Then the support set of C ∪D in S would be exactly S, so C and D can not be closed, as
there is a superset of them with the same support set. We reached a contradiction, so the thesis is true.

We can now prove Lemma 2.

Proof of Lemma 2. Let A be a CI in S, and let SA be the set of subsets of A with the same frequency in S
as A:

SA = {B ⊆ A : fS(B) = fS(A)} .

The elements of SA are the itemsets that appear in all and only the transactions of S where A appears. This
means that, for all B ∈ SA, vS(B) = vS(A). To conclude the proof it is sufficient to show that there can
not be two CIs C and D in S s.t. vS(C) = vS(D). This is an immediate consequence of Lemma 3 and the
proof is complete.

This result explains why computing the function w from (3) is expensive: we would need to extract the
set CI(S) of all CIs in the sample (i.e., mine the sample at frequency 1/|S|). In the following we develop an
upper bound to w that can be computed efficiently with a single scan of the sample.

4.3 Bounding the Rademacher Average
In this section we show how to efficiently bound the conditional Rademacher average RS . To do so, we define
a function w̃ which is an upper bound to w from (3) in every point of R+. The advantage of w̃ is that it
can be computed using just the frequencies in the sample of the items in I and some additional information
that can be obtained with a single scan of the sample. To define w̃ we need a partitioning of CI(S) that we
now introduce.

Assume to sort the items in IS in increasing order by their frequency in S, ties broken arbitrarily (e.g.,
according to the order < on I). Let <i denote the resulting ordering. Given an item a, assume to sort the
transactions of TS({a}) in increasing order by the number of items they contain that come after a in the
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ordering <i, ties broken arbitrarily (e.g., using unique transaction identifiers). Let <a denote the resulting
ordering.

Let C1 = CI(S) ∩ IS and C2+ be the subset of CI(S) containing only the CIs of size at least two. We
partition C2+ as follows. Let A ∈ C2+ and let a ∈ A be the item in A that comes before any other item in
A according to the order “<i”. Let τ be transaction containing A that comes before any other transaction
containing A in the order “<a”. Clearly a ∈ τ . We assign A to the set Ca,τ .

Consider now a transaction τ ∈ TS({a}), and assume that it contains exactly ka,τ items that come after
a in the ordering <i. In the ordering <a, the transaction τ comes

1. before all transactions with more than ka,τ items that come after a in the ordering <i and
2. before zero or more of the transactions with exactly ka,τ items that come after a in the ordering <i

(the exact number of such transactions depends on the tie-breaking criteria).

For each r ≥ 1, let ga,r be the number of transactions in TS({a}) containing exactly r items that come
after a in the ordering <i. Let χa = max{r : ga,r > 0} and let

ha,r =
χa∑
j≥r

ga,j .

The value χa is the maximum r such that there exists at least one transaction in TS({a}) containing exactly
r items that come after a in the order <i. Each value ha,r is the number of transactions in TS({a}) that
contain at least r items that come after a in the order <i.

Now, assume that τ is the `a,τ -th transaction in the ordering <a that contains exactly ka,τ items that
come after a in the ordering <i. In other words, if we consider only the transactions containing exactly ka,τ
items that come after a in the ordering <i, then τ is the `a,τ -th of such transactions in the ordering <a. We
have the following result on the size of Ca,τ .

Lemma 4. We have
|Ca,τ | ≤ 2min{ka,τ ,ha,ka,τ−`a,τ} .

Proof. The quantity 2ka,τ is the number of subsets B of τ such that B = {a}∪C where C is any non-empty
subset of τ containing only items that come after a in the order <i. Since Ca,τ contains only itemsets that
appear in τ and are in the form of B, then |Ca,τ | ≤ 2ka,τ .

Consider now an itemset A ∈ Ca,τ . Apart from τ , A can only appear in transactions τ ′ ∈ TS({a}) such
that τ <a τ ′, as A = {a} ∪C, for C as above. This is true for any itemset A ∈ Ca,τ . Let T denote the set of
such transactions, then |T | = ha,ka,τ − `a,τ . From Lemma 3 we have that there is at most one CI for each
set D = {τ} ∪ F of transactions, where F ⊆ T , so there at most 2ha,ka,τ−`a,τ CIs in Ca,τ .

From Lemma 4 and the fact that

CI(S) = C1 ∪ C2+ = C1 ∪

 ⋃
a∈IS

⋃
τ∈TS ({a})

Ca,τ

 (4)

we have the following result on the number of Closed Itemsets in S, which is of independent interest.

Corollary 1.
|CI(S)| ≤ |IS |+

∑
a∈IS

∑
τ∈TS({a})

2min{ka,τ ,ha,ka,τ−`a,τ} .

The following lemma puts together the above results to obtain an upper bound to RS .

Lemma 5. Let w̃ : R+ → R+ be the function

w̃(s) = 1
s

ln
∑
a∈IS

1 +
χa∑
r=1

ga,r∑
j=1

2min{r,ha,r−j}

 e
s2fS (a)

2n

 .
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Then
RS ≤ min

s∈R+
w̃(s) .

Proof. Consider the function w from (3). From the definition of Euclidean norm, we have that, for any
A ⊆ I, ‖vS(A)‖ =

√
nfS(A). Using this fact and combining Lemma 2 and the equality from (4), we can

rewrite w as

w(s) = 1
s

ln

∑
a∈C1

e
s2fS (a)

2n +
∑
a∈IS

∑
τ∈TS (a)

∑
A∈Ca,τ

e
s2fS (A)

2n

 .

We now show that w(s) ≤ w̃(s) for any s ∈ R+. The thesis will then follow from Thm. 3.
First of all, since C1 ⊆ IS , we have ∑

a∈C1

e
s2fS (a)

2n ≤
∑
a∈IS

e
s2fS (a)

2n .

Then, for any a ∈ IS , ∑
τ∈TS ({a})

∑
A∈Ca,τ

e
s2fS (A)

2n ≤
∑

τ∈TS ({a})

2min{ka,τ ,ha,ka,τ−`a,τ}e
s2fS (a)

2n ,

where we used Lemma 4 to bound the size of Ca,τ and the fact that for any A ∈ Ca,τ , fS(A) ≤ fS(a), given
the anti-monotonicity property of the frequency.

Finally, we can rewrite the right-hand side of this last equation as
χa∑
r=1

ga,r∑
j=1

2min{r,ha,r−j}e
s2fS (a)

2n .

By combining these equations we have that w(s) ≤ w̃(s) for any s ∈ R+, and the thesis follows from
Thm. 3.

We are now ready to formally state our stopping condition that guarantees that an (ε, δ)-approximation
can be computed when the condition is satisfied.

Theorem 4 (Stopping condition). Let i be the minimum index for which it holds that

2w̃(s∗) +

√
2 ln(2/δ)
|Si|

≤ ε

2 . (5)

Then FI(Si, I, θ − ε/2) is an (ε, δ)-approximation to FI(D, I, θ).

Proof. The proof follows by combining Lemma 1, Thm. 1, Thm. 3, and Lemma 5.

4.4 Computing the bound
We now discuss how it is possible to check the stopping condition with a single scan of the sample. In
particular, it is possible to obtain the expression for w̃ with a single scan, then its minimum of w̃ can be
found by computing the value s∗ which minimizes w̃.

Computing w̃ To compute the expression for w̃ we only need the quantities ga,k and ha,r for any a ∈ IS
and for all r, 1 ≤ r ≤ χa. These can be computed with a single scan of the sample. Indeed, the order <i
can be obtained from the frequencies of the items in the sample, which we assumed to have been computed
during the sample creation. Then, it is sufficient to look at each transaction τ once, sort its items according
to the order <i and, for any item a ∈ τ , increment ga,ka,τ by one and increase by one all counters ha,r for
1 ≤ r ≤ ka,τ .
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Minimizing w̃ The function w̃ has first and second derivatives w.r.t. s everywhere in R+ and it is convex, so
it has a global minimum which can be found efficiently using a non-linear optimization solver like NLopt [15].

Algorithm 1 presents the pseudocode of our progressive sampling algorithm to compute an (ε, δ)-approximation
to FI(D, I, θ). The function random_sample(D,m) returns m transactions sampled at random with replace-
ment from D.

Algorithm 1: Progressive sampling algorithm
input : a dataset D built on alphabet I, parameters θ, ε, δ ∈ (0, 1), a sampling schedule (|Si|)i≥1.
output: An (ε, δ)-approximation to FI(D, I, θ)
i← 0, S0 ← ∅, |S0| ← 0
repeat

i← i+ 1
S∗ ←random_sample (D, |Si| − |Si−1|)
Si ← Si−1 ∪ S∗
//We assume that the frequencies of the items have been computed while creating the sample.
ga,r ← 0,∀a ∈ ISi , r ∈ N
ha,r ← 0,∀a ∈ ISi , r ∈ N
for τ ∈ Si do

for a ∈ τ do
ka,τ ← number of items in τ that come after a in the order <i
ga,ka,τ ← ga,ka,τ + 1
for j ← 1, . . . , ka,τ do

ha,j ← ha,j + 1
end

end
χa ← max{r : ha,r > 0}

end
//In the following expression, s is a symbol.

w̃(s)←

ln
∑
a∈IS

1 +
χa∑
r=1

ga,r∑
j=1

2min{r,ha,r−j}

 e
s2fS (a)

2n


s

s∗ ← arg mins∈R+ w̃(s)
η ← 2w̃(s∗) +

√
2 ln(2/δ)
|Si|

until η ≤ ε/2
return FI(Si, I, θ − ε/2)

4.5 Top-k Frequent Itemsets
Only minor modifications are needed to obtain an algorithm for computing (ε, δ)-approximations to the set
of top-k FIs. The main differences from the algorithm presented in the previous section are: 1. a stricter
stopping condition; and 2. the need to run an exact mining algorithm on the final sample twice, one to
find the top-k-th highest frequency f (k)

S in the sample and one to extract the approximation at a lowered
frequency threshold that depends on f (k)

S .

Theorem 5. Let i be the minimum index for which it holds that

2w̃(s∗) +

√
2 ln(2/δ)
|Si|

≤ ε

4 ,

9



and let f (k)
Si be the frequency in Si of the k-th most frequent itemset in Si. Then FI(Si, I, f (k)

Si − ε/2) is an
(ε, δ)-approximation to TOPK(D, I, k).

The proof leverages on Thm. 4, following the same steps as the proof for [22, Lemma 5.3].

4.6 Selecting the sampling schedule
Any non-decreasing sequence (|Si|)i≥1 can act as a sampling schedule and Provost et al. [21] showed that a
geometric sampling schedule (i.e., a schedule where Si = αiS0 for some constant α) is asymptotically optimal
when checking the stopping condition takes time O(|Si|). Nevertheless, even such a schedule requires the
user to specify two parameters: an initial sample size S0, and a “growth rate” α > 1.

In our case it is possible to avoid forcing the choices of these parameters to the user, and instead allow
the algorithm to select an initial sample size and then choose successive sample sizes based on the quality of
the current sample. This has the net result of removing two parameters from the algorithm.

Choosing the initial sample size We ask whether it is possible to choose the initial sample size wisely
so that the algorithm does not waste time in creating and analyzing samples that are just too small for the
stopping condition to be satisfied (exceeding in the other direction, i.e., having an initial sample size that is
a bit too large, is not a significant issue). In our case it is possible to compute the “necessary” initial sample
size S∗0 , i.e., the minimum sample size which makes it possible for the stopping condition to be satisfied. In
other words, for sample size smaller than S∗0 it is deterministically impossible that the stopping condition is
satisfied, and therefore it is useless to create and analyze samples smaller than S∗0 .

Lemma 6. Let
S∗0 = 8 ln(2/δ)

ε2 (6)

The stopping condition (5) from Thm. 4 can not be satisfied on samples with size smaller than S∗0 .

Proof. Assume that there exists a sample S of size smaller than S∗0 for which the stopping condition (5) in
Thm. 4 can be satisfied. For such a sample, we have√

2 ln(2/δ)
|S|

>
ε

2 .

From this and the fact that w̃(s) ≥ 0, we have that the stopping condition can not be satisfied, so we reached
a contradiction and the thesis holds.

Computing the size of the next sample We can exploit the information obtained from mining the
current sample to compute a meaningful sample size for the next iteration.

Assume to be at iteration i ≥ 0 of the algorithm, and let ηi be the value of the l.h.s. of (5) at the end
of the current iteration, and let |Si| be the size of the sample used in iteration i. Then at the next iteration
i+ 1 we use a sample of size |Si+1|, with

|Si+1| =
(

2ηi
ε

)2
|Si| . (7)

The intuition behind the above formula is that ηi is, through Thm. 1, an upper bound to the maximum
deviation between the frequency in Si of any itemset and the frequency of that itemset in the original
dataset. There is a necessary quadratic dependency between this measure and the sample size [17], hence
we can use εi and |Si| to compute a sample size |Si+1| for which, everything else unvaried, the error allowed
in a sample of that size (i.e., the l.h.s. of (5)) would be at most ε/2, as required by the stopping condition
of our algorithm.

10



Although the method we just presented does not give any guarantee on the optimality of the schedule,
our experimental evaluation results (Sect. 5) show that is highly effective and results in a faster execution
of the algorithm than using a geometric sample schedule, thanks to the fact that intermediate sample sizes
that are probably not sufficient for computing an (ε, δ)-approximation are skipped.

4.7 Discussion
To the best of our knowledge, our algorithm improves over all progressive-sampling approaches previously
presented in the literature [6, 7, 14, 18, 20, 21, 25] because it does not require the execution of any expensive
Frequent Itemsets mining algorithm on each sample to check the stopping condition. Indeed the computation
of the stopping condition only requires one scan of the sample. More straightforward stopping conditions
with the same requirements are possible: we explored a number of them, both empirically and theoretically,
and found them substantially looser (i.e., satisfied only at larger sample size) than the one presented in
this work. We plan to include a presentation of these alternative sub-par stopping conditions, and the
comparison of their performances with the one from our algorithm in a furtherly extended version of this
work. It is indeed necessary to strike a delicate balance between the speed of checking the stopping condition
and its strictness (i.e., how early it becomes satisfied), otherwise the advantages of using sampling rather
than analyzing the entire dataset are lost.

As the stopping condition does not depend in any way on θ, this parameter can be fixed at a later stage.
This is again a consequence of the fact that we do not need to run a mining algorithm on the sample to
check the stopping condition.

We remark that the dependency on 1/ε2 of the sample size can not be improved, as shown by Liberty
et al. [17].

4.8 Static-sampling variant
A variant of the approach presented in previous sections can be used in a static-sampling fashion. Consider
the following scenario: rather than having access to the entire dataset D and being able to sample from it as
much as desired, we are given a single random sample S of the dataset of some size n, a fixed parameter δ ∈
(0, 1), and a minimum frequency threshold θ ∈ (0, 1]. The task requires to compute an (ε, δ)-approximation
to FI(D, I, θ) for the best possible ε. No access to the dataset is possible and no other information about the
dataset is available. This scenario is realistic and actually common, as it may be easy to create (and maintain)
one single random sample of the dataset of a specific size while the dataset is created, while obtaining access
to the entire dataset may not be feasible. Previous approaches like those presented by Riondato and Upfal
[22] and Chakaravarthy et al. [5] rely on characteristic quantities of the dataset (e.g., the d-index [22], or
the longest transaction in the dataset [5]) to compute a single sample size that allows to obtain the desired
quality guarantees. Computing such quantities require scanning the entire dataset. Not only this may be
extremely expensive for modern datasets, but it is not even possible in the scenario we just described. These
approaches would then be useless in this scenario, as they have no information on the characteristic quantities
they need. On the other hand, our approach only uses sample-dependent quantities (namely, the distribution
of the sample frequencies of single items and related quantities), and can therefore compute the best (i.e.,
smallest) ε obtainable from the given sample S. Indeed, it follows from Thm. 4 that such value is

ε = 2
(

2w̃(s∗) +

√
2 ln(2/δ)
|Si|

)
. (8)

Similarly, to approximate TOPK(D, I, k): from Thm. 5 we get

ε = 4
(

2w̃(s∗) +

√
2 ln(2/δ)
|Si|

)
.

Even if we relax the scenario and assume that the algorithm by Riondato and Upfal [22] (currently the
best available for static sampling) has knowledge of an upper bound to the d-index of the dataset, the results
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of our experimental evaluation (Sect. 5) show that the value for ε computed by our approach using (8) is
consistently (although not always) better (i.e., smaller) than the one computed by the algorithm in [22].

Riondato et al. [24] presented PARMA, a MapReduce algorithm for mining approximate collections of FIs.
The variant presented in this section can be used in PARMA to obtain even higher-quality approximation
or even smaller samples.

5 Experimental evaluation
We evaluate the performances of our algorithm by assessing the accuracy of the returned collection of FIs
and by evaluating the algorithm runtime, comparing it with the time needed to extract the exact collection
of FIs and to extract an approximate collection with the same guarantees using the algorithm by Riondato
and Upfal [22] (from now on denoted as VC, as it is based on VC-dimension). We choose to compare to this
static sampling approach rather than to other existing progressive sampling approaches due to the fact that
no existing progressive sampling approach offers the same guarantees of our algorithm. We only report here
a subset of the results. More are available in Appendix A.

Implementation, datasets, and parameters We implemented our algorithm in C++11 and used the
C implementation by Grahne and Zhu [10] for the mining step. Our implementation is publicly available
at http://cs.brown.edu/~matteo/radeprogrfi.tar.bz2. We use NLopt [15] to compute the minimum
of w̃ for the stopping condition (Thm. 4). We run the experiments on a machine with a quad-core AMD
PhenomTM II X4 955 processor and 16GB of RAM, running GNU/Linux 3.2.0. We used datasets from the
FIMI’03 repository (http://fimi.ua.ac.be/data/) [9]. The characteristics of the datasets are reported in
Table 1. Each dataset is replicated a number of times (between 200 and 1000) w.r.t. its FIMI’03 version,
so that its size is representative of modern datasets and the real-life distributions of the frequencies of the
itemsets and of the transaction length are preserved. The d-bound d is a quantity used by VC to compute
the sample size n as

n = 4
ε2

(
d+ ln 1

δ

)
.

It is, informally, the maximum index d for which the dataset contains at least d different transactions of
length at least d [22, Sect. 4.1], and can be computed with a scan of the whole dataset.

Name Repl. factor Size (|D|) |I| d-bound [22]
accidents 200 68036601 468 46
connect 1000 67557000 129 43
BMS-POS 200 103119400 1657 81
kosarak 200 1980001400 41270 443
pumsb_star 1000 49046000 2088 59
retail 400 35264804 16470 58

Table 1: Dataset characteristics

In all our experiments we fixed δ = 0.1. The initial sample sizes are computed according to (6). Except
when otherwise specified, we used the “automatic” sampling schedule described in Sect. 4.6, i.e., we used (7)
to compute the size of the sample to analyze at the next iteration. The value for ε ranged in the set
{0.01, 0.012, 0.015, 0.017, 0.02}. We run our algorithm five times for each combination of parameters, in
order to evaluate fluctuations in accuracy and running time due to the randomized nature of our algorithm.
Unless otherwise specified, the reported quantities are the averages over the runs.

Accuracy We evaluate the accuracy of our algorithm in terms of the recall, precision, and error in frequency
estimation for the output collection.
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Recall. The first result of our experimental evaluation is that in all the hundreds of runs of our algorithm,
for all datasets and combinations of parameters, the returned collection of itemsets always has the three
properties from Def. 1, not just with probability 1 − δ. This holds in particular for the first property (all
itemsets in FI(D, I, θ) are in the output collection), which means that the recall of our algorithm is always
100%.
Precision. As for the precision of our algorithm, i.e., the ratio between the size of FI(D, I, θ) and the output
size, we remark that our algorithm gives no guarantee in this sense, as any itemsets with frequency in [θ−ε, θ)
may be in the output collection. Hence the precision depends on the distribution of the dataset frequencies
in this interval. In our experiments, it varied between 15% and 92%, depending on the parameters and on
the dataset. We also measure the fraction of the itemsets with frequencies in [θ − ε, θ) that are included
in the output. This quantity ranges from 49% to a vanishingly small quantity when ε ≥ θ (indeed in this
case any itemset appearing in the dataset may be included in the output). We report the behavior of this
quantity for various values of ε in Figure 1, for the connect dataset at θ = 0.72. In this figure we report
the size of FI(D, I, θ) (“FI” line), the number of possible “False Positives” (i.e., the number of itemsets with
frequencies in [θ − ε, θ) in the dataset), the average number of FP in the output collection, and the ratio
between this latter quantity to the former (aligned to the right vertical axis). We can see that the number
of included FP grows slower than the number of possible FP, and therefore the ratio goes down. These False
Positives are the price to pay when mining a sample of the dataset, and, by setting ε, the user understands
that such False Positives are possible. In any case, our algorithm still returns a relatively compact collection
of itemsets, rather than including any itemset that could theoretically be included (i.e., all the itemsets with
frequencies in [θ − ε, θ)). Indeed the collection can still be used, in all cases, as a set of candidates from
which to compute efficiently the exact collection of FIs with a single linear scan of the dataset. The cost of
this operation is almost always negligible. We remark once more that no itemset with frequency less than
θ − ε was ever included in the output nor any itemset with frequency at least θ was ever missed.
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Figure 1: Precision for connect, θ = 0.72.

Frequency Estimation. For every itemset A in the output collection, we measure the absolute frequency
error errS(A) = |fS(A)−fD(A)|, where S is the last sample analyzed. The third property from Def. 1 requires
errS(A) to be at most ε/2. Figure 2 shows the behavior of errS on the retail dataset, with θ = 0.015. The
behavior for other datasets and combination of parameters was similar and is presented in the Appendix A.
We can see that the absolute error is almost an order of magnitude less than ε/2, both for the average and
for the maximum error, and that it is very concentrated around the average. These low numbers are not due
to the fact that many itemsets in the output collection have a low frequency in the dataset: we also measure
the relative frequency error, defined as 100errS(A)/fD(A), and we report it in Figure 2, aligned to the right
vertical axis. As we can see, this quantity was always less than 1.4%. In the future, we plan to develop an
algorithm that gives guarantee on the relative frequency error, rather than on the absolute error.
Discussion. The results of the accuracy experiments allow us to state that the algorithm performs in
practice even better than what the theory guarantees. This is due to the fact that the theoretical analysis
uses upper bounds that are developed for the worst case which almost never corresponds to naturally-arising
datasets. The results also suggest that there is room for further improvements in the derivation of these

13



0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022
0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0

0.2

0.4

0.6

0.8

1

1.2

1.4max
avg + stdev
avg
max rel
avg rel

epsilon

ab
so

lu
te

 fr
eq

. e
rr

or

re
la

tiv
e 

fr
eq

. e
rr

or

Figure 2: Frequency error for retail, θ = 0.015.

bounds and their use in pattern mining.

Runtime The main motivation of our work is that a FI mining algorithm based on progressive can be
faster than one based on static sampling as it avoids the need to compute (or assume as known) characteristic
quantities of the dataset which would require access to the entire dataset, and it can use properties of the
sample to stop at smaller sample sizes. We compare the running time of our algorithm to that of VC, to
that of an exact algorithm for mining FI(D, I, θ) from the whole dataset [10], and to the running time of
our algorithm using a geometric sampling schedule |Si| = αi|S0| for different values of α (in these cases, the
initial sample size |S0| was still computed using (6) as in all our experiments). The results are reported for
BMS-POS, θ = 0.015 in Figure 3. Results for other datasets are similar and are reported in the Appendix A.
From the plot, it is possible to appreciate that our algorithm vastly outperforms the exact algorithm and
also VC. While the first fact should be expected, the latter is due to VC having to scan the dataset in order
to compute the d-bound, which can be relative expensive compared to our algorithm which needs no such
computation. Moreover, as we discuss later, the sample size computed by VC is in most cases larger than
the final sample size used by our algorithm. We also report the running time for our algorithm using a
geometric sample schedule with different values (2.0, 2.5, 3.0) for the scaling parameter α. This allows us to
evaluate the performances of the “automatic” sampling schedule described in Sect. 4.6. We can see that the
automatic sampling schedule is more efficient as it allows our algorithm to run faster than with a geometric
sample schedule by avoiding the creation and analysis of samples whose size is probably not sufficient for
the stopping condition to be satisfied, based on information obtained from the current sample. In almost
all the runs of our algorithm, for all combinations of parameters and datasets, our algorithm stops after
only two iterations (the only exception (3 iterations) happens for larger values of ε on the kosarak dataset).
This means that the information obtained at the minimum reasonable sample size (as computed by (6)) is
extremely useful to compute a sufficient sample size using (7). Instead, the runs using the geometric sample
schedule stops after a variable number of iterations, which was not possible to predict in advance, and does
not behave monotonically, as can be seen from Fig. 3. Hence, the use of the automatic sampling schedule is
highly recommended, as it allows faster or comparable execution times and the removal of the parameter α,
whose impact on the algorithm performances may not be clear a priori to the user.

We also analyze the breakdown of the runtime of our algorithm, splitting it between time needed to
sample the transaction, time needed to evaluate the stopping condition, and time needed to perform the
mining of the sample after the stopping condition is satisfied. The results are reported for the pumsb_star
dataset, θ = 0.32 in Figure 4. We can see that the runtime decreases as ε grows. This is due to the sampling
time and the mining time decreasing because the algorithm stops at smaller samples for larger values of
ε. The fact that the mining time decreases as ε increases is particularly interesting: the lowered frequency
threshold θ − ε/2 at which the final sample is mined is smaller for larger values of ε and, on a sample of
the same size, it would imply longer mining time than for lower values of ε. Instead the time saved due to
the smaller sample dominates the impact of the lower threshold. It is also clear that at small values of ε,
the sampling time accounts for the majority of the running time. As expected, the sampling time depends
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Figure 3: Running time for BMS-POS, θ = 0.015.

quadratically on 1/ε while the time needed to evaluate the stopping condition is almost constant. This
suggests that it is indeed important to achieve a delicate balance between the cost of evaluating the stopping
condition and the possibility that it is satisfied at smaller sample sizes. This was indeed one of our main
guiding principles when designing our stopping condition.

0.01 0.012 0.015 0.017 0.02
0.0E+0
1.0E+4
2.0E+4
3.0E+4
4.0E+4
5.0E+4
6.0E+4
7.0E+4
8.0E+4
9.0E+4
1.0E+5

mining
stop. condition
sampling

epsilon

ru
nt

im
e 

(m
s)

Figure 4: Breakdown of runtime for pumsb_star, θ = 0.32.

Static sampling We also evaluate whether the static-sampling variant presented in Sect. 4.8 could out-
perform VC. We compared for a given sample size n, the value for ε obtained using (8) on a sample of size
n, to the value εVC obtained using VC for the same sample size, which is

εVC =
√
d+ ln(1/δ)

n
,

where d is the d-bound of the dataset (values in Table 1). In Figure 5 we show the results for the datasets
kosarak and accidents. It is possible to see that εVC is smaller than the one computed by our method at
smaller sample size on the accidents dataset, but the ε computed using (8) decreases faster as n grows and
becomes smaller than εVC at larger but reasonable sample sizes. On the other hand, on kosarak our method
vastly outperforms VC, with a ε that is half the one computed by VC. The datasets BMS-POS, pumsb-star,
and retail showed results similar to those for kosarak, while the comparison for the dataset connect was
similar to that on accidents. Looking at the characteristics of the datasets connect and accidents we noticed
that they have a smaller number of items, a smaller d-bound, and more items with very high frequency
than the other datasets. Of these characteristics, the last two are intuitively the ones with major impact
on the results we see: a low d-bound results in a smaller εVC, while high-frequency items will have a high
frequency also in the sample, resulting in higher values for w∗(s), which depends on the items frequencies,
and therefore in a higher ε. We are currently investigating how to improve our stopping condition in these
cases.

We remark again that VC requires access to the entire dataset in order to compute d, which makes it
unusable in some situation, as mentioned in Sect. 4.8. Moreover, computing d, as we showed when presenting
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Figure 5: Static sampling evaluation.

the runtime results, can be extremely expensive, and the loss in terms of the accuracy parameter ε may be
traded off by the gain in speed. The comparison is therefore a slightly unfair to our methods, given that
VC is allowed to obtain crucial information by performing additional computation on the entire dataset. For
these reasons, we consider our method more flexible and more powerful than VC.

6 Conclusions
We present an algorithm for extracting a high-quality approximation of the collection of FIs with probabilistic
guarantees. The algorithm employs progressive sampling with a stopping condition that relies on bounding
the conditional Rademacher average of the problem using easy-to-compute characteristic quantities of the
sample. The stopping condition can therefore be evaluated very efficiently without the need to perform an
expensive in-depth mining of the frequent itemsets in the sample at each step. To our knowledge this is
the first work that uses Rademacher averages in a knowledge discovery setting. The experimental results
confirm that the algorithm is extremely successful at stopping fast at early iterations, and allows to extract
very high-quality approximation of the collection of FIs. Among the possible directions for future work, it
would be particularly interesting to better study the trade-off between the computational complexity of the
stopping condition and its ability to stop at small sample sizes. We are currently investigating algorithms that
give relative/multiplicative approximation guarantees, and extensions of our work to additional significance
measures different from frequency [23, 25, 29].
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A Additional Experimental Results
In this section we present additional plots that were not included in the main body because of space lim-
itations. Figure 6 presents the results for the precision of our algorithm on different datasets, similar to
Figure 1. Figure 7 presents the results for the frequency errors, as in Figure 2. Figure 8 presents the runtime
comparisons with the baselines, like Figure 3. The breakdown of the runtime in the three components can
be seen in Figure 9, as in Figure 4. Finally, in Figure 10 one can see the comparison of the static-sampling
approaches, like in figure Figure 5.
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Figure 6: Precision
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Figure 7: Frequency Error
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Figure 8: Runtime
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Figure 9: Runtime breakdown
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